

UltraTech Cement Works

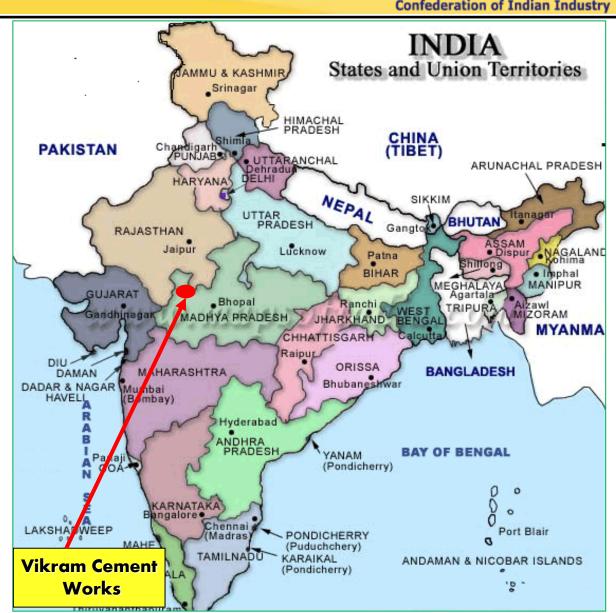
Team Presenter

Praveen Vijayvargiya – GM-TPP Angad Singh – Manager-TPP Pramod Sati- AM-TPP

24 to 27th Aug, 2021

Content

- Brief Introduction on Company/Unit
- Energy Consumption Overview
- Sp. Energy Consumption Trend last 3 year
- Benchmarking data
- List of EnCon Projects Last 3 years
- Innovative Projects
- Utilization of Renewal energy resources
- Environment Management-Ash Utilization
- **Environment Management- Emission**
- **Environment Management- Water**
- Best practices sharing
- **Team work, Employee involvement & Monitoring**
- Implementation of ISO certification
- Learning from Energy Award



Company Profile: Unit Introduction

UltraTech Cement Ltd – Vikram Cement Works

- UTCL: A part of ABG which is the best employer in India and Asia Pacific region.
- Vikram Cement Works: An Unit of UltraTech which is Third largest Cement producer in World (Ex-China).
- 46 MW Captive Thermal Power Plant (2X23MW).
- First Cement Plant in India acknowledged as pioneer of TPM,
 JIPM Japan in 1995
- First Cement plant in India ,Obtained ISO 14001 in 1997, EMS
 Certification from DNV
- Certified with ISO 9001, 14001, OHSAS 18001, ISO 50000,ISO 27001, SA8000 standards
- Certified with ISO50001 & Implemented Energy Policy in 2013
- Adopted WCM Excellence Model & Achieved Two times Gold award
- In year 2019 Sept, unit got 1st position in CII National Excellent Energy Efficiency Award.

1

2

3

4

5

6

7

8

9

10

PLF

Availability

Gross Heat Rate

Auxiliary Power

Boiler Efficiency

DM Water Consumption

Raw Water Consumption

Specific Oil Consumption

TG Heat Rates

Annual Generation

1863.9

68.9

98

3018.1

8.24

87.46

2640

2.46

0.29

0.007

CII National Award for Excellence in Energy Management 2021

2416.9

68.11

99.96

3010.9

7.1

87.61

2638

1.45

0.2

0.0068

553

0.79

1.96

7.2

1.14

0.15

2

1.01

0.09

0.0002

Confederation of Indian Industry

Reason for

variance

Improved

Low Load demand

Improved

Improved

Improved

Improved

Improved

Improved

Improved

Sustain

	<i>Oltralech</i> Co	UltraTech		Consumpt	tion O	verview	- Current	t year P	ertormance	Co
--	---------------------	-----------	--	----------	--------	---------	-----------	----------	------------	----

UltraTech	3			С

Sr. No **KPIs** Unit FY2019-20 FY2020-21 Variance

Lac Kwh

%

%

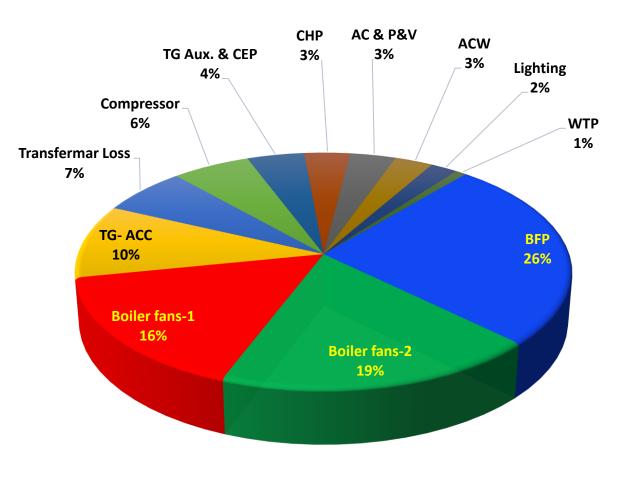
Kcal/Kwh

%

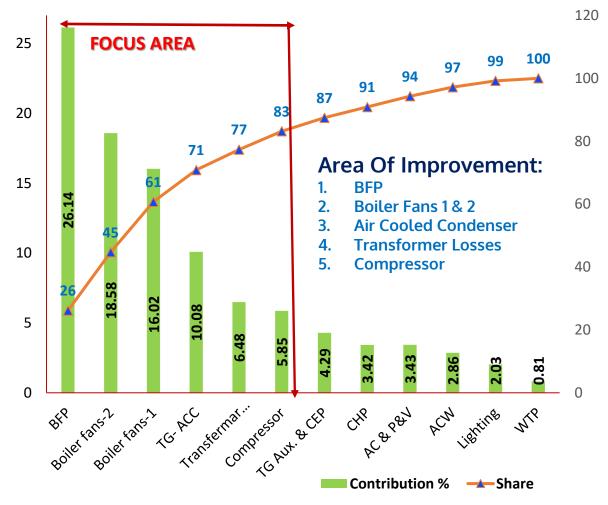
%

Kcal/Kwh

%

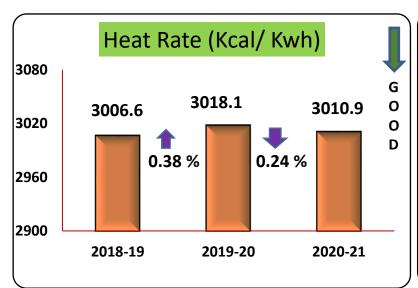

 M^3/Mw

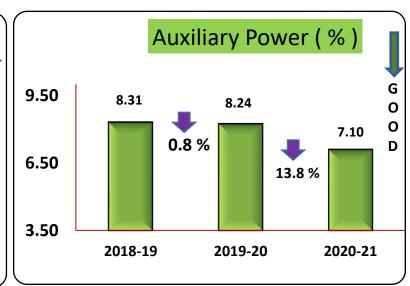
KL/Mw

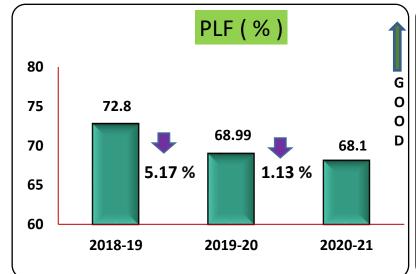

Energy Consumption Overview – Opportunity Identification

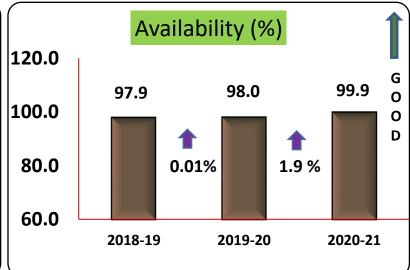
Aux. % Contribution

Pareto chart for area wise Power consumption plotted & Analyzed

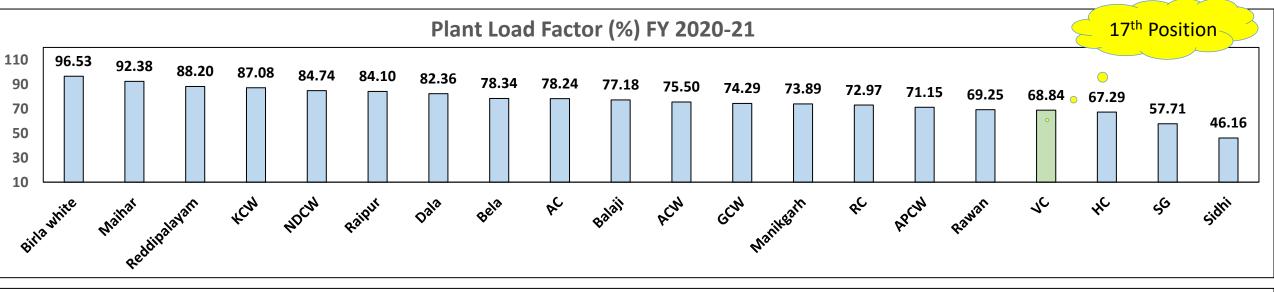


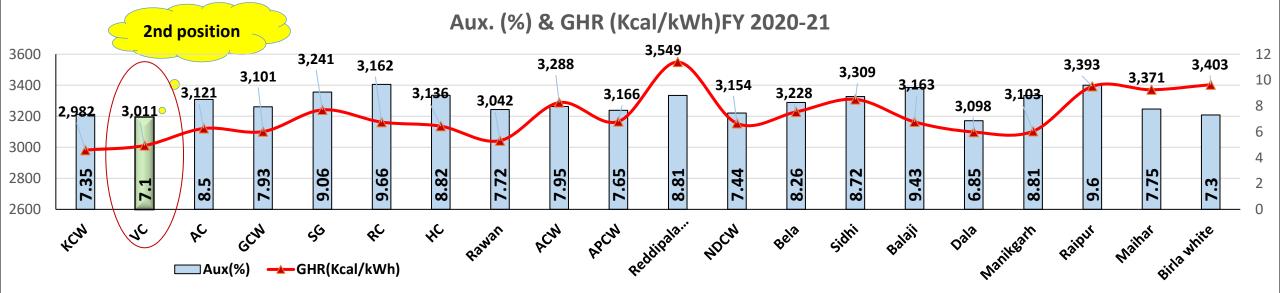



Sp. Energy Consumption Trend



		YTD Figure				
Parameters	2019-20	2020-21	Variance	Reason for Variance		
Gross Heat Rate (Kcal/Kwh)	3018.1	3010.9	7.2	Improved 0.24%		
Auxiliary (%)	8.24	7.10	1.14	Improved 1.14%		
Plant Load Factor (%)	68.99	68.1	0.89	Due to Covid19 lockdown and low demand		
Availability (%)	98	99.9	1.9	Plant Availability improve		





Plant Performance & Benchmarking with UltraTech units

Energy Saving Project Implemented in Last 3 Years

Aux (%)	8.24
PLF (%)	68.99

Aux (%) 8.31 **PLF (%)** 72.4

2018-19

EnCon Projects

20 Nos.

Saving INR/Annum

27.17 Million Rs.

- **ACC Tube bundle & fans replacement**
- **TG-2 Major overhauling**
- **HT Fans Suction Duct modification**
- **BFP** reconditioning
- VAM System installing

EnCon Projects

16 Nos.

Saving INR/Annum

23.34 Million Rs.

- AHU-4 Installation in MV Drive Unit-2
- BFP run in drum level control mode
- VFD in bag filters & DP mode operation
- ACC Tube bundle replacement in unit-1
- · Grid Surrender to reduce billing cost.
- Air dryer operation with chilled water.
- Compressor cooing with chilled water system.

Aux (%) 7.10 **PLF (%)** 68.11

2020-21

EnCon Projects

23 Nos.

Saving INR/Annum

14.24 Million Rs.

- ID & PA fans in HT motor replacement
- **BFP-3 HT Motor replacement.**
- Logic modification inn Ash Handling system
- **APC** installation in Boiler's
- SOV Installation in common header of B/H.
- Auto Operation of Soot blower & BAC.

CLINANADV (EVON10 21)

12.5 12.3 12.0 11.7

U	se cinder as a boi	ler fuel.	3UN	IIVIAKI (FI	2018-21)	
	Year	No of Energy Saving Projects	Investment (INR Million) Returnable Capex Sanction	Electrical Saving Million Kwh	Thermal Saving Million Kcal/MTOE	Total Saving INR Million
	FY2018-19	20	70.36	1.89	1224	30.058
	FY2019-20	16	50.53	2.89	0	14.82
	FY2020-21	23	12.26	2.5	219.56	14.02 ₈
	Total	59	133.15	7.28	1443.56	58.9

18.7

20

18

16

14

12

10

Auxiliary (%)

CII National Award for Excellence in Energy Management 2021

Strategic Action Plan Fy2021-22

Plant	Points	Action Plan	Expected Benefits	FPR	Target Date	Status
VCW TPP	Auxiliary consumption reduction (kWh)	1. ACW Pump Discharge Pressure optimization from 1.55 Kg/Cm2 to 1.48 Kg/CM2. 2. Timer based Operation of Office AC. 3. Work Shop MV Drive AHU Operating in fixed speed to be control at room temp. 4.5th Generation AHU Blower Installation at CCR AHU. 5. Increase Coal Handing plant throughput up to 150 TPH. 6. Reduction of Aux. Power consumption of Cooling tower fan by group auto logic. 7. Reduction in Compressor Aux. Power Consumption. 8. Energy Efficient pump Installed in CEP pump. 9. Installation of LED Light in Convection light. 10. Process optimization through fine tuning of APC.	900 KW/day (0.13 % reduction in APC)		OD- 31st	* ACW pump replaced with Energy efficient pump and save 100 KW/day. * Optimization of ACW pressure by process optimization abd save 120 KW/day. * Installed Timer for offices of AC. * Optimization of Boiler fan power. * CHP throughput improvement under progress. * Arresting steam leakages and control passing of high pressure
	Plant heat rate reduction	 1.Process optimization through fine tuning of APC. 2.Air to fuel combustion improvement with APC fine tuning operation. 3. Optimization of Steam Pressure & Temp. of Turbine 4. Identification of Passing of valves and rectification. 5.Optimization of TG Exhaust Pr. & Temp. 6.Boiler-1 & APH Tube Replacement. 	12 Kcal/kWh	HOD- TPP		valves.
	Capex	 High Energy Condensate Extraction Pump-Return base Protection relay replacement for power system stability- Essential DG PLC upgradation-Essential based Silica analyzer Upgradation-Essential based Boiler reliability AI-OT project-Essential based Laptop Upgradation-Essential based CEMS Upgradation- Statutory Requirement 	Returnable/ Essential / Statutory requirement based			Rs. 51.6 Lac capex budget sanctioned
	Cost	, , , ,				Rs. 115.28 Lac gained up to June,21 by use of Carbon shale in fuel mix

Target short term/ Long term Fy2021-22

No	Title of Project	Annual Electrical Saving	Annual Thermal Saving	Investment
		(Million kWh)	(Million Kcal)	(Rs in Million)
1	Cooling Fan Installation in GT-1 Radiator cooling to reduce losses	0.01051	0	0.05
2	Energy Efficient Motor installation in LT Drives	0.0765	0	0.3
3	Energy Efficient pump Installed in CEP pump	0.084	0	0.4
4	Energy Efficient pump installed in existing ACW pump	0.03504	0	0.15
5	Boiler-1 APH Tube Bunch Replacement (Kcal)	0	356.89	6.2
6	Solar Power Plant installation 9.0 MWp.	0	31883	85
7	Air to fuel combustion improvement with APC fine tuning operation	0	4.34	0
	Total	0.20605	32244.2	92.05

Power cost Rs./KWH	5.06					
Fuel cost Rs./KWH	3.98					
Aux (%)	<6.5 %					
PLF (%)	60.62%					
2021-22						
<u> </u>						

Major EnCon Projects Identifi	ed
18 Nos.	, ,
Saving INR/Annum	į
50.4 Million Rs./Annum	

- Use of Australian Coal + US coal along with 20% coa shale
- ACW High energy efficient Pump with
- ACW Motor changed from 132KW to 45KW
- CHP Bucket Elevator 1or 2 Single VFD operation
- Cooling Fan installation in Main 35MVA trafo.
- LED Light installation
- Bucket elevator 1or 2 run with single VFD
- •\ CT fan run in auto group logic

Target

Innovative Project implemented at site

Theme:

☐ Innovation in Air Dryer

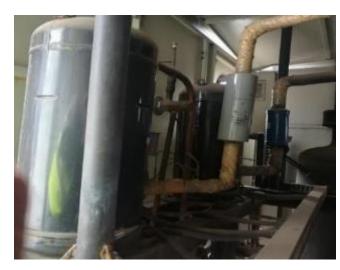
Problem:

Air Dryer have refrigerant based gas R402 which is phase out due to Environmental issue declared as non green gas. Also Electric Compressor (7Kw) Type Air Dryer was used for Drying of Instrument Air and consuming very high auxiliary power

For identifying possible Reasons behind

- ☐ The temperature of Chilled water was minimum 7 Deg C. and the cooler size of Existing dryer was small to deliver the required flow of air
- Connecting the dryer in Existing system online when plant is running.
- ☐ Procurement for replacement of dryer with R407 Green gas (R-22 refrigerant gas going to be banned due to environment)
- ☐ Scope in VAM TR loading (TR loading is 64TR whereas capacity is 80TR)

Area: Compressed Air System


New System: Vapor Absorption M/c

Result & Impact achieved

Possible Solutions

- At TPP we were having a old Dryer installed in Service Air system which was not in operation and also the capacity of this dryer was 5000 CFM. This dryer can be used with chilled water to get the required flow of Dry Air.
- □ Procurement for replacement of dryer with R407 Green gas (R 22 refrigerant gas going to be banned due to environment)
- ☐ Procurement of New dryer with inbuilt chilled water system.

Before – After Data Comparison with Base Line Data

		Comparison D	oata (Before- After)
	Samples	Generation	Ash handling and Compressor system
	Nos. of Days	KWH	KWH/Day
Before	fore 17 330824		197
After	14	431000	19
Benefit Achieved per day			178

Result:

Annual Projected Energy Saving	0.65 Lac Units/Annum
Annual Saving in terms of money	Rs. 3.25 Lac/Annum

Sharing: The Success Story of same shared among our group units of

UltraTech & Idea Sharing Platform "I Love My UltraTech"

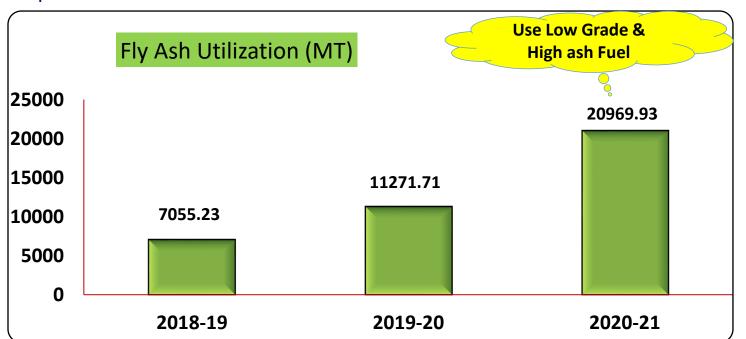
Renewal Energy Uses

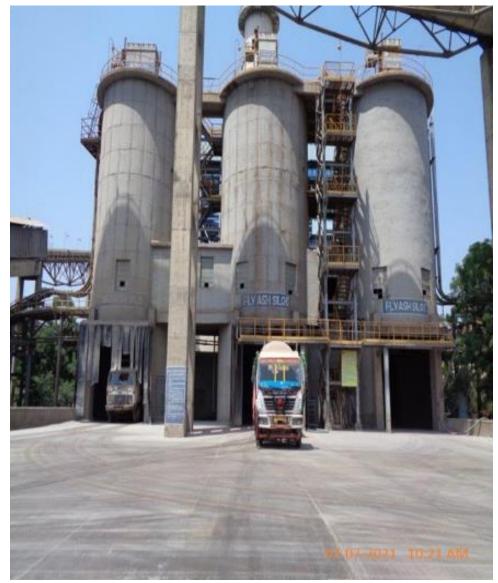
Green Township

☐ 9000 KWp Solar Plant inauguration done at Vikram Cement Works.

☐Installation & commissioning will be done by Dec'2021.

☐ Colony Power requirement mainly catered through Solar power generation.



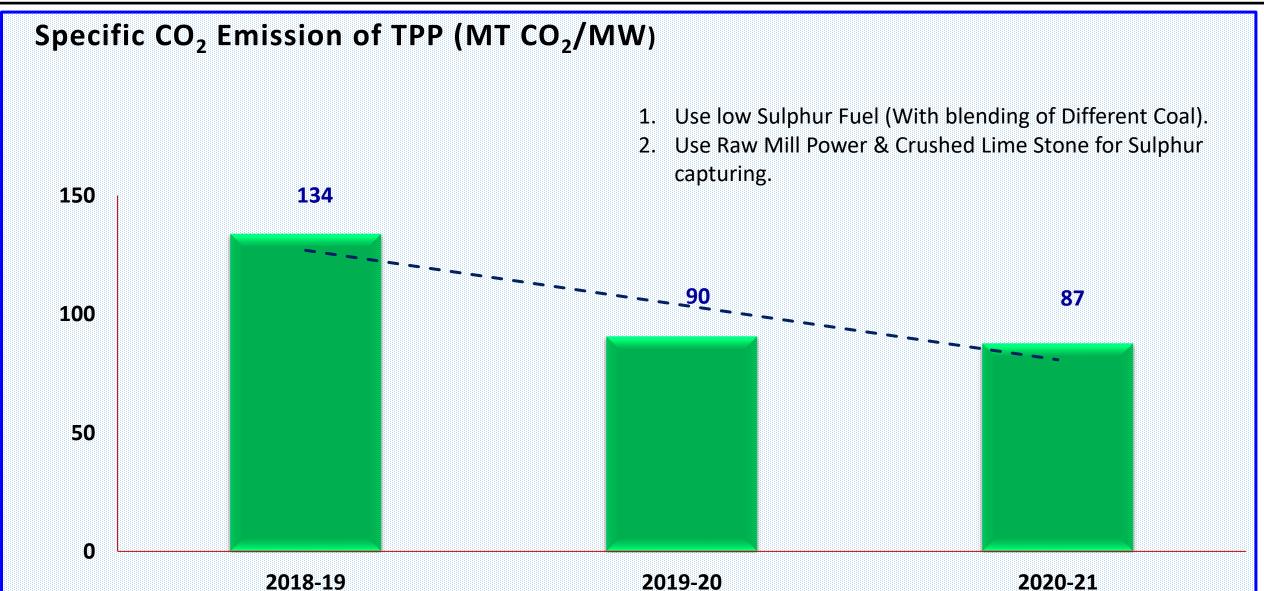


Environment Management- Ash Utilization

- Fly ash being generated from boilers are conveyed to fly ash silos.
- From Silos, fly ash is again transported through Bulker to cement mill silos where it is being consumed 100% for cement manufacturing.
- It is being used completely as a raw material for cement plant. It is added in the raw meal additive hopper for further process at cement plant.

Environment Management- Ash Utilization

S.No	Particulars	UOM	2018-2019	2019-2020	2020-2021
1	Ash Stock in Plant (yard + pond)	Tons	0	0	0
2	Ash Generated	Tons	7055.23	11271.71	20969.93
3	Ash Utilization	%	100	100	100
4	Ash Utilized in Fly Ash Bricks	%	0	0	0
5	Ash Utilized in Mine filling	%	0	0	0
6	Ash Utilized for Roads pavements	%	0	0	0
7	Ash Utilization in Other Areas – Please mention below	%	NA	NA	NA
8	Expenditure on Ash Utilization (annual)	NR (Lakhs)	19.32	19.80	20.96


Ash Handled (Wet Method)	%	NA
Ash Handled (Dry Method)	%	100
Ash Handled (semi wet)	%	NA

100 % of Fly Ash transport to Cement Plant for Cement Production.

Environment Management- Emission

Environment Management-Emission

Absolute Emission & Emission intensity

S.No	Particulars	UOM	2018-19	2019-20	2020-21
1	Total CO2 Emissions Per kW of Generation	Ton/kWh	0.00093	0.00092	0.00092
2	Current SOx Emissions at Full Load	mg/Nm3	450.1	475.2	395.2
3	Current NOx Emissions at Full Load	mg/Nm3	146.0	137.2	126.4
4	Particulate Matter	mg/Nm3	31.2	29.4	29.8
5	Mercury	mg/Nm3	<0.001	<0.001	<0.001

- ➤ Raw Meal Powder/Limestone screen reject used and maintaining environment norms.
- Less Sulphur coal fired in Boilers.
- Use bag house in TPP for maintaining SPM less than 30 mg/Nm3
- Auto SMS alert to Concerned Persons while the Environment parameters is exceeding alarming limit before reaching the CPCB Norm.

GHG Information and Pubic Disclosure

PARAMETER	ENV NORMS	CPCB. VALUE (mg/Nm3)
SPM (mg/Nm3)	50mg/Nm3	21.40
SOX (ppm)	600mg/Nm3 205 ppm	238.52
NOX (ppm)	300mg/Nm3 146 ppm	87.30

CPCB ENVIRONMENT MONETERING SYSTEM

Environment Management- Water

☐ DM water Consumption of Plant (Unit - %)

FY	2018-19	2019-20	2020-21
%	1.82	2.46	1.45

□ Raw Water Consumption of Plant (Unit – M³/MW)

FY	2018-19	2019-20	2020-21
M ³ /MW	0.234	0.293	0.196

- ☐ Weather Plant is Zero Liquid Discharge- Yes
- ➤ RO reject water & Continues Blow Down water is used in Cooling Tower Make Up.
- Rein water harvesting for reduction of water consumption.
- Use of N-pit treated water in Horticulture.
- ▶ 6+ water positive by storage at our mines and being supplied to surrounding village.

Best Practices in Water Management

Theme	Reduction of Bulk Chemical consumption along with cost
Problem	High Consumption of bulk Chemicals (caustic and Hydrochloric acid) due to low capacity of DM Plant.
Action	Reduced 4 times caustic and Hydrochloric acid consumption by modification in RO plant & upgradation of Mixed bed.
Result	Chemical Cost Saving Approx. Rs. 6.5 Lacs/ Annum.

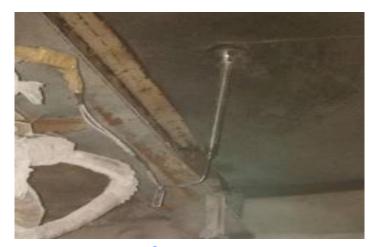
Theme	Elimination of Hazardous chemical for boiler water treatment.
Problem	Hydrazine hydrate is a toxic and harmful for human
Action	Replace Hydrazine hydrate with substituted of Di-Carbo hydrazanium as oxygen scavenger
Result	Reduction in Chemical hazards during chemical handling.

Theme	To Reduce Aux. Power consumption in WTP.
Problem	High Aux. Power consumption to make up water for Cooling water & Water treatment plant.
Action	Reduced auxiliary power consumption by using gravity & several modifications in pump rating of water treatment plant.
Result	Approx. power saving of 200 kWh/Day and Rs. 3.65 Lac/Annum

Best Practices in the Plant (Non-Energy Efficiency)

Digitization

■ Boiler's On line false air monitoring.



☐ Touch less elevator operation.

Innovation

Reliability

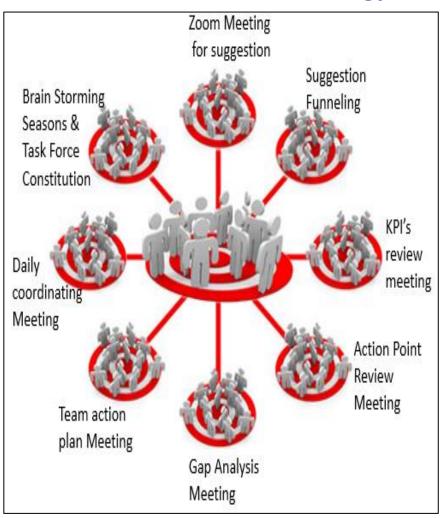
☐ Bed Thermocouple (Headless)

Safety

☐ Panic Bar installation at MCC & PCC gate.

☐ Belt tear Arrangement Hook-up with DCS.

Door Access Control to restrict unauthorised entry Safety



Employee Engagement & Team Work

Energy Review and Monitoring

- ☐ Regular study of Equipment's Performance & Analysis of deviations
- ☐ Process Evaluation & Identification of Energy Conservation scope.
- **□** Daily monitoring of Specific Energy report.
- ☐ Real time power consumption data monitoring through online Energy Monitoring System.
- ☐ Feasibility study of suggestions and preparing proposals for sanction.
- □ Promoting energy saving idea generation by shop floor teams and time bound implementation
- Organizing Internal and External Energy Audit.
- Benchmarking with National/International/Group Units/Cluster units and action plan for improvement.

Monitoring & Review Formats Description

Daily Co-ordination meeting on Power Planning and Performance review

Daily Review of Power Report

Daily Review of KPIs.

Energy Audit done Yearly – Internal & External.

Monthly Performance Review meeting points compliance

Employee Engagement & Team Work

Opportunity Identification.....

MPR review meeting

REP	ORT	ner. value]	oday		MTD	
Area	Parameter	LDesign	Line # 01	ine # 02	Combined	Total	Aug
	Generation (KVH)	~	318000	4E+05	684000	1352000	19176000
	Auxilliary (KVH)		24400	28400	52800	104000	1515811
	Auxilliary (%)		7.67	7.76	7.72	7.69	7.91
	Auxilliary from cement plant						
	Auxilliary % (cement plant)						
	Total Steam Generation (MT)		1336	1535	2871	2871	115333
	Specific Steam Consumption	(Kg/kwh)	4.20	4.19	4.20	4.21	4.19
	Shut Down power		0	0	0	0	
	Plant Load Factor (%)	100	57.61	66.30	61.96	61.23	58.8800
	Avg.Load (MV)	23	13.25	15.25	28.50	28.17	27.05
	Gross Heat Rate (Kcal/Kwh)		3017.67	****	3014.80	3016.78	3014.38
	Ambient Air Temperature (av	g/maz/min)	27.94/34.26				
	Power Cost (Rs./KVH)		4.60	4.63			-
	Fuel Cost (Rs./KVH)				3.73	3.75	-
	Lime Stone Cost (Rs./KVH)		0.040	0.040	0.040	0.040	
	Fiz cost (Rs./KVH)						
	Electricity Duty (Rs./KVH)					0.75	
	RPM (Assumption as per flas	h)				0.099	
	Stores & Spares (Rs./KVH)					0.052	
	Fly ash Credit @814 Rs/MT (F	is/kWh)	0.080	0.085	0.081		
	Boiler Efficiency (%)		87.52	87.52	87.52	87.36	87.41
	Fuel Consumption (Kg/KVH)	0.421	0.452	0.451	0.452	0.4518	0.423
	Coal Consumption (MT)		154.42	154.42	308.84	610.86	8028.69
	Coal GCV (Kcal/KG)		6677	6677	6677	6677.00	7107.66
	O2 Average (%)	2.5%-3.5%	4.60	4.74			
		OK / Not OK		Ok			
		OK / Not OK		OK			
	Wind Box pressure (mmwc)		890	900			
	LOI FA/BA (%)	< 2.5	7.24	6.94			
	BLAINE FLY ASH(sqmtr/kg)					-	
	Lime Stone Consumption		20.12	25.43	45.55		
	Fly Ash Generation		31.18	38.23	69.41		
		OK / Not OK	Ok	Ok			
	Total Coal Feed (MT)		394.7				
	CHP Run Hrs		11.12				
	CHP Average Feed rate (TPH		48.51				
		mm 8	1.52				
4	· 27.08.2019	28.08.201	9 29.08.2	019	30.08.20	19 3:	1.08.2019

KPI's review meeting

1						TPPD	ally Repo	rt						
ŝ											058ep-18			
4				Budget			Today			MID			rm	
5	Parameters	Units	Unit-1	lint2	Total	Unit-L	Unit-2	Total	Units	Unid	Total	Unit-1	Unit-2	Total
6	Mant Performance													
1	Analog factor	5.	130.00	300.00	130.00	100.0	1000	1000	2000	1000	900,0000	464	954	725
3	96 Number Hours	lin .	794.00	344.00	148800	140	19	48.0	7200	72.00	\$44,0000	2888	8720.0	3458.5
9	Plent Load Radion	5	49304	7870	SUFF	92	632	1831	50.00	908	98.11	56.89	79.44	\$7.00
b	Gron Senarcian	985	8502000000	19480000	21880000000	305.00	344000	946,00	988000	1060000	1998/00,00	21508000	57955000	90477300
1	Aus Denyunation	6/0	695000.00	1077000.00	1772000000	25500	27000	90808	72500	83300	254300,00	1890/16	5805613	X1908
12		5	LP.	807	8.9	7.88	7.85	7.86	110	7.76	225	8.09	159	LO
9		Srin .	3.00	600	3.00	3			400	t	4092000	426	- 0	45285
14	Aux, Power from Centent R	(m	XX	600	XX)		3	0		0,000	0		(
3	Aus gamen rolled ng 10		LT	807	UI	7.88	7.85	7.85	117	778	221	8.70	EN.	Le
5	Md Consistier	W	360000000	12301000.00	5007500030	276700	\$17000	505100	38501	\$77700	1841/00.80	30688000	62150888	\$29,082
17	Awarge Load	w	11.28	2810	5469	11.38	11.38	3532	1203	1472	27.75	1195	9.27	322
3	151/12/05	WI .	1.K	600	1.K	1958	1442	701	2619	4950	NEED	HEAS	3000	3550
3	Seem from to lend.	vī	3.00	000	N.K	1998	1	198	2519		2919,00	90077	0	90077
Ø	Soundran to le-2	W1	3.00	600	1.80	1	1442	1242	0	4480	461,000	5005	31000	30700
21	io. Store Cors	QUA.	3.00	600	3.00	420	433	428	421	428	420	4.18	434	425
22	Turb he liest liste	05/001	3.80	600	XX	350	3598	3508	282018	2038	2536.82	305	3523	395/6
	tap daily i	bepart	Θ						:	ı				

Daily Energy Review Meeting

-	Mary Mary Co.	Report Date	DAILY AUXILARY POWER REPORT Beneri late 2019 09 03											
Se.	Syciem	Equipment Name	d Load		20	13-03-03 Today	3			113-03-0. Mondag	2	20	113-0:3-0 Sunday	ii .
No.	description		(KV)	Avera	Today	Sum of Aux.	SEC	% Ass.	Y. Day	Sen of Ass.	SEC	Y. Dog	Sum of Aug.	583
1		IDFAN-I	1920	35	1872				2005		$\overline{}$	2912		
21		Paran-1	470	202	8582				814.2		l	8431		
ě.		SAIFANH (LT MOTOR)	250	- 8	440	2567	195	E2 1845	501	2128	141	425	8570	158
+		P.FAN-I	185		•				0		l	- 1		
6		Dollar I April teller	585	35	692		_	_	657		-	708		_
		DFAN-E DAGAN-2	H20 1906	£1	2044 7057		7.34		2928 1069			2965		
	Boiler System		990	116 112	584	Kiso				16000	154	7541	1920 1	120
0	1	SAFAN-I (LTMOTOR) P. FAN-1	105		***	K199		5180	70	0 1600	-	571	18900	10
10		Polici / Amiliaries	996		264				967			204		
7		PORT 1	1956	25	344			_	397		_	200		-
100		F9F.7	202	265	12971	TO STILL	6.70	23.75	Maga	10.00	400	MEA	1082	a n
D.		BPF-2	202		12011	1.011		40.74	0	W.44.2		HIA.	HE.	
14.		Service Comp. 1	210	-	-			-	9		-	- i		_
<u>n</u>		Service Comp-2	211	-	-				9		l	H :-		
10.		Service Comp.3	211	-	-				9		l	i i		
	Compressed	Inst. Air Comp./	106	TW	2158	940	0.40	5.14	1047	5011	524	1846	2010	6.32
10.	Air System	Inst. Alt Comp./2	106	45	16.7				70			20		
LA.		Inst.AltComp./)	100	42.	20				28.		l	IA.		
29		Asia handling and Compression states	84	25	262				247		l	235		
21		TG-LAudian ex	57%	35	985				356			295		
62		TG-LADO	6 KH0	71	1987	208	0.71	4.21	1485	2690	0.72	1087	2544	0.70
69		TG-ICEP	23150	82	500				255			546		
24		TO-2 Audio No.	686	60	923				064			680		
	Turbine	TOP ADD	6.00100	21	1968	\$145	0.21	4.81	900	\$507	XH	1976	2417	5.81
	Spatiera	TORCEP	23.00	24	362				276			207		
207		AC+1	1.6						V			-		
20		ACMS	17/9	92	1411	B00	0.26	239	HE	1000	320	100%	595	100

Action Point Review Meeting

Sr. No.	Activity escription	Responsible Person	Target date	Status	Remarks, if any
1	Structure painting and fire hydrant line painting	Milind Bawankar	14.07.2019	U/P	R1 30.09.2019
2	Area ownership board updation in TPP area	Milind Bawankar	10.07.2019	U/P	30.09.2019
3	audit on 28th & 29th	Milind Bawankar	26.06.2019	Completed	
4	Study and stabilisation of ambient temperature, DCS vs manual for one week and put correction factors accordingly	Anurag Garg	04.07.2019	Completed	
5	Preparation of WFD CAPEX for CHP bag filters	Anurag Garg	27.06.2019	U/P	R1 30.08.2019
6	Display of confined space PFD and its display at site	Milind Bawankar	10.07.2019	U/P(R1-31.07.2019)	CHP Pending R1 15.09.2019
	Feasibility of amonia dosing in boiler to be done	Naveen Dave	10.07.2019	u/i(R1-22.07.2019)	Deffered
8	PSSR of TPP 1 to be prepared	Milind Bawankar	29.06.2019	u/p R1-31.07.2019	Completed
9	Endorsement of BOE certificate and boiler attendant certificate	Milind Bawankar	10.07.2019	R1 -02.08.2019	R2 30.09,2019
10	Compilation of improvement project recived from TPP members and taskforce to be made for implementation of projects	Naveen Dave/sati	28.06.2019	Completed on 16.08.19	R2 28.08.2019
- 11	Visual display of flex board at site	Milind Bawankar	14.07.2019	R1-22.07.2019	R2 29.08.2019
12	Practice to be decided to planning of daily job planning and execution in TPP whatsapp group	Anurag Garg	Immediate	R1-22.07.2019	
13	Visit of consultant to reduce NOX level of Boiler	Naveen Dave	15.07.2019	NB	
14	Barchart for activity to be made	Milind Bawankar/ Naveen Dave/ Hanumaiah Chekuri	26.06.2019	R1-20.07.2019	Completed
15	Service Order to be made for ACC CAPEX	Anurag Garg/ Naveen Dave	07.07.2019	R1-20.08.2019	PR Created, Negotiation under progress. R2 15.03.2019
16	History of shutdown jobs executed in Boiler#1 to be updated in SAP	Milind Bawankar/ Naveen Dave/ Hanumaiah Chekuri	30.06.2019	R1-27.07.2019	R2 26.08.2019
17 Cooler kept back side of compressor have needs to maintained as grass to be changed and permanent water supply with float to be provided		Naveen Dave		R1-27.02.2020	
18	Preparation of Boiler wet- preservation SOP	Milind Bawankar		R1-31.07.2019	R2 26.08.2019
19	Tools audit to be conducted and report to be submitted	Naveen Dave/ Hanumaiah		R1-31.07.2019	Completed
·	Pending Activity Cor	npleted Activ	ity (Đ	

Employee Engagement & Team Work

Planning & Prioritization of Suggestions

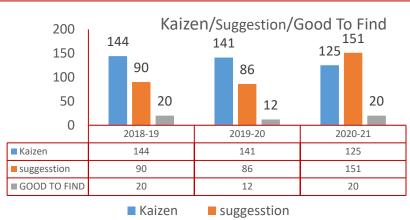
		Sources of Suggestion identification			Feasible Investment		Priority		Status			Updated,			
Category	Qty	Manthan	GRT Suggestion	Brain storming	Yes	No	Yes	No	P1	P2	P3	Completed	U/P	Pendin g	1 st of July,21
Auxiliary	35	13	9	13	32	3	11	21	17	10	5	3	8	21	Analysed the priority
Cost Control	10	8	1	1	10	0	1	9	6	0	4	2	4	4	based on Impact, cost, Capex, Aux,
Reliability Improvement	29	0	9	20	29	0	18	11	18	4	7	7	12	10	shutdown, and reliability and Saving analysis under
PHR	25	10	2	13	25	0	7	18	13	10	2	4	9	12	progress
Total	99	31	21	47	96	3	37	59	54	24	18	16	33	47	

Summarized Report

		Feasi	ble	Invest	ment		Priority			Target Date			Status		Saving
Category	Qty	Yes	No	Yes	No	P1	L P2 P3 P1 P2 P3	Р3	Completed	U/P	Pending	Potential			
Thermal Power Plant	99	96	3	37	59	54	24	18	31.08.2021	30.12.2021	31.03.2022	16	33	47	Aux: 900 Kwh/Day PHR: 13 Kcal/Unit

P1- High Impact with less cost /without involving any cost/Approved Capex/Reliability

P2- High Impact to be execute in shut down


P3- Required Planning and budgeting

Team Work , Employee Involvement & Monitoring

S N	EnCon idea	Team involved
1	Replacement of pump with High energy efficient pump designed to deliver 600m3/hr flow at 2kg/cm2. Earlier it was 700m3/hr at 4kg/cm2 with 132KW motor	Maintenance & E&I
2	Reduced the Aux. Cooling Water Pump Power by reducing the Pressure from 1.8 Kg/Cm2 to 1.45 kg/cm2 through VVFD.	Operation
3	Reduced ACW power through an innovation idea of replacing of low heating surface heat exchanger with higher heating surface oil cooler	Maintenance
4	CHP Bucket Elevator 1 &2 Operation with Single VFD based one selection	E&I
5	Compressor Power reduced through an innovative idea replacing refrigerant dryer with VAM supplied chilled water	Maintenance & E&I
6	BFP Power Reduced Through an innovative idea without involving any cost-BFP MV drive operated in closed loop for maintaining drum level directly	Operation & E&I
7	Energy Reduction in Compressor power using SOV with actuator at each header of bag house in Unit-1 & 2	Maintenance & E&I
8	CT Fan Power Reduction Initiatives through an innovative idea- Cooling tower water nozzles modified in house team	

Fig: Cross Functional teams

Fig: Presented ideas on Flip Cart

Implementation of ISO certification

Energy Management System Standard

Unit Turn Over (INR million) Fy2020-21	1247
Investment in EnCon Projects (INR million) Fy2020-21	11.38
% of Investment EnCon Projects	0.91%

Learning from CII & Other Award function

Learning:

- Replication of various ideas and proven technology .
- Implementation of best practices learned from CII or other award function.
- Improving knowledge of the process and new technology.
- Avail opportunity to achieve high business benefits.
- Learned Project planning ,Execution and Application engineering.
- Enhanced uses of various QC tools, Analysis & presentation skill.

Sharing:

The Success Story of same shared among our group units of ABG & Idea Sharing Platform "I Love My UltraTech"

Innovative project: BFP Auto Close Loop Operation in Drum Level Mode

Confederation of Indian Industry

Theme:

BFP Operation in Level Mode in place of DP Mode of Control

Problem:

High Specific Energy Consumption of BFP due to manual DP Set point used in controlling the BFP power.

Action Taken:

- New Logic Prepared to run BFP in Level Mode
- Kept Feed control valve at 100% Open
- Operation made with respect to Drum Level instead of DP set point
- BFP Minimum RPM Locking reduced from 85% to 80%
- BFP Standby pump avoid started by changing Header pressure set point 103 kg/cm2 to 95 kg/cm2

Result Achieved

Annual Saving in terms of money

Ave Day Generation in L .KWh BFP-2 Power Saving in Drum level mode/	Dav in KWh	695000 888.1	
Diff Saving in Specific		0.13	
Ave Specific in Drum level mode		2.08	
Ave Specific power in DP mode 2			

16.69 Lac Rs.

DP Control logic	Roller drum	LEVEL Control logic	Boiler drum
	MAY 12 (360 S)	Cana	100 C 100 C C C 100 C C C C C C C C C C C C C C C C C C
BFP PUMP PI	P2 L2 Drum level	BFP PUMP PUMP RPN	P2 L2 Drainfevel pressure
Rs. 6.79 Lac additional gain achieved with this	CV 0-100 %	OF OF OF OF	CV 100%
modification	VALVE		FED WATER CONTROL ALVE

In DP mode

- BFP RPM will regulate according for **DP Set point**
- Feed water control valve will maintain drum level.

In Level mode

- BFP RPM will regulate to maintain drum level in boiler
- Control will be fully open (100%) to minimize pressure drop.

12.0 Power saving of Cooling water pump by Innovation in Air Compressors.

Confederation of Indian Industry

Theme Problem

Solution

Benefit

Theme:

Operation of Screw Compressor with 1.8 Kg/Cm2 Cooling Water Pressure.

Problem:

Screw Compressor trips on High Element Temperature when we reduce the cooling water pressure to 1.8 kg/Cm2 from 2.0 Kg/cm2.

Action/Solution:

- Consulted Atlas Copco but they insisted in increasing Water pressure to more than 2.5 Kg/cm2.
- Team did Brainstorming for options available and we decided to increase the heating surface area of Oil cooler. Found a spare cooler kept at DG set and installed this cooler in Compressor by modifying the Compressor Oil & Water circuit.
- Installed Big Plate heat exchanger in Oil Circuit and now we are running at Cooling water pressure at 1.8 Kg/Cm2.

Result Achieved

Reduction in Auxiliary Cooling Water pump power by 192 KWh/Day

New Installed Oil

Auxiliary cooling water pump power optimisation initiatives

Confederation of Indian Industry

Theme

Problem

Solution

Benefit

ACW Auxiliary Power Optimization

ACW pump was taking high power due to low efficiency as it was designed to deliver flow 700 M3/ hr at 4kg/cm2.

Installed Motor was 132 KW and pump was operated at approx.42 KW.

Review and brainstorming with team and below are the possible solution -

Replacement of Motor with lesser capacity (45 KW in place of 132 KW).

Replacement of Pump with energy efficient pump.

Replacement of Pump and Motor .

VFD configuration/setting change from 132 to 45 KW

Optimization of Cooling water utilization for reduction of consumption.

Action taken :-

Replacement of pump with High energy efficient pump designed to deliver 600m3/hr flow at 2kg/cm2.

Replacement of 132 KW motor with available spare motor (45 KW) and accordingly VFD configuration changed.

Utilisation optimised of ACW pump and set point changed from 1.55Kg/cm2 to 1.5 kg/cm2.

ACW Pump Power consumption reduced from 1032 KW TO 852 KW /Day.

Power consumption reduced by replacing pump – 100 KW/Day.

Power consumption reduced by system optimization – 80 KW/Day.

Monetary saving – Rs. 3.28 Lacs/Year

Energy Efficient Pump with 45KW motor in place 132KW

Before- Pump with 132KW Motor

Running One BFP in place of Two BFPs at High load.

Theme:

 Reduction in Specific Power of Boiler feed Pump by using one BFP (for 32 MW Capacity) at high load operation.

Problem:

 Load demand increased to 38MW average and we had to run second BFP when load increased above 32MW. This resulted in increase of Power by 140 kwh/hour.

Action/Solution:

- Study of Boiler Feed Pump curve was done and it was accessed that we can run single BFP up to 38.2 MW load.
- Major risk was Boiler tripping due to low drum level.
- Team decided to take the calculated risk by optimizing Drum pressure & Flow.
- We successfully run the single BFP at 38 MW continuous operation.

Result Achieved

Reduction in Boiler Feed pump power by 2800 KWh/Day.

BFP-3 11KV HT Motor Replacement with high efficient motor

Theme:

BFP -3 HT Motor Replacement with high efficiency indigenous Motor 97%.

Problem:

High Auxiliary power consumption due to low efficiency 94.9%.

Action/Solution:

- Study of Boiler Feed Pump curve was done and observed that single BFP up to 38.2 MW load and taken power 596 Kw approx. hence there is a margin of power saving if same motor replaced by high efficiency motor
- Capex purposed with minor modification at motor foundation level with the same pump Motor have been replaced.

Result Achieved

 Reduction in Auxiliary BFP power by 999 KWh/Day and BFP specific power consumption reduced from 2.03 to 1.88

CHP Bucket Elevator 1 or 2 operation with Single VFD

Confederation of Indian Industry

Theme

Problem

Solution

Benefit

CHP Bucket Elevator 1 &2 Operation with Single VFD based one selection

High Auxiliary Power due to Line-1 Bucket Elevator has to run in DOL mode in the following conditions.....

- 1. Line -2 jamming condition
- 2. Line-2 hammer crusher problem & maintenance issue

VFD taken out from Line-2 and re installation in Line-1 for power saving purpose is very risk job, unsafe and time taking viz. rerouting of power cable, rerouting of control cable, logic modification, interlock and trial etc

Observation & Solution

- Line-2 Bucket Elevator was working in VFD as well as DOL
- ➤ Line-1 Bucket Elevator was running in DOL at fixed speed due to having no VFD option, analyzed data found that on and average 70 to 80 Hrs/Month bucket elevators-1 was running in DOL due having issue in the Line-2 Bucket Elevator was 3ph Induction motor of 15KW, 970RPM and taking average power 8.6Kw in DOL mode
- ➢ Identification of Spare feeders, drawing built and convert Bucket elevator -1 in VFD as well as DOL mode as per requirement
- Built Logic provide cross and modified sequential start stop interlock and hook with DCS to run in VFD mode as per the selection.
- Power saving 25kw/day
- 100 Kwh/month (Per day running Hrs. 5Hrs.)
- Monetary Saving : Rs. 0.06 Lac/Annum
- Save Power and inventory cost of 15Kw VFD Rs. 1.05 Lac
- One DOL Feeder made spare for future
- Safety Strengthen- No VFD replacement

VAM AHUs in Auto control loop

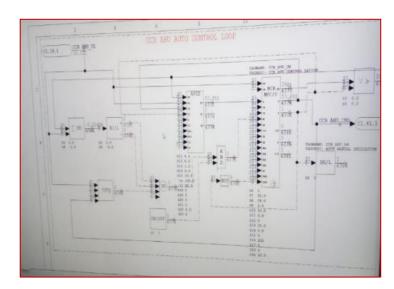
Problem

Theme:

VAM AHUs to run in auto control loop with the room temp set point

Problem:

High Specific Energy Consumption of ACs & P&V system, There are 4 Nos. of AHUs working in MV drive room- BFP, UNIT-1&2 Boiler fans and CCR and each blower running in fixed speed.


Action/Solution:

- 1. Ambient Room Temp RTD is available in every room where AHUs blower delivering cool air
- 2. Control PID logic build in DCS for operation of Each AHUs to operate in close loop operation with ambient room temp set point
- 3. Cabling done at AHU to hookup with DCS for control loop operation
- 4. Replication of Auto close loop logic for other AHUs

Result Achieved

Avg Specific power without Control Loop Operation	0.00092
Avg Specific power with Control Loop Operation	0.00070
Diff Saving in Specific	0.00022
Ave Day Generation in L .KWh	666333
VAM Power Saving in close Loop /Day in KWh	146.59

Annual Projected Energy Saving	0.535 Lac Units/Annum
Annual Saving in terms of money	2.75 Lac Rs.

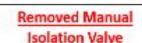
Energy Reduction in Compressor power (without any Investment)

Energy Reduction in Compressor power using SOV with actuator at each header of bag house in Unit-1 & 2

Problem

Solution

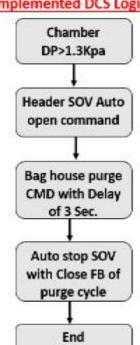
Fluctuating demand of air and more loading power of compressor leads to high power consumption, High maintenance cost and ideal running of stand by compressor



- One Boiler having 4 nos. of air headers which were continuously charged during shutdown.
- Sound of air leaking came from SOVs inside chamber
- One unit having 72 nos. of SOVs, it is very difficult to identify the leakage during running condition to avoid it was suggested
- To Installed SOV operated valve on Bag house purge header and interlock to be provide to open & close in auto based on DP set point

Benefit

- Stopped Unidentified continuous air leakage from SOVs Kaizen done with labor cost
- 320 Kwh/Day Compressed Power reduction observed rom 2070 Kwh/day to 1750 Kwh/day
- Monetary Saving : Rs. 5.04 Lac/Annum



Implemented DCS Logic

Energy Reduction Initiatives : Reduced ACW Power

Confederation of Indian Industry
Unused Water Valve Closed & throttle at various Location

Theme

Solution

Benefit

ACW Power Reduction Initiatives vai walk through audit

High Auxiliary Power of ACW Pump

Team has conducted audit and identified various opportunities to reduce auxiliary power reduction at ACW pump and able to reduce ACW pressure from 1.70 to 1.55 kg/cm2

Stopped the unused cooling water inlet valve at various locations

- 1. 11TR Ductile AC not in use at MV drive Unit-1
- 2. 11TR Ductile AC not in use at MV drive room BFP
- 3. 11TR Ductile AC not in used at Unit-2 MV drive
- 4. Instrument Air Dryer not in used at compressor house
- 5. P fan HT Motor fan bearing

Throttle cooling water inlet valve at various locations

- 1. Throttle valve Boiler Fans unit-1 & BFP-1
- 2. Throttle valve Boiler Fans Unit-2
- 3. 11TR Ductile AC not in used at Unit-2 MV drive
- 4. Bed Ash cooler
- 1. Reduction in Auxiliary Cooling Water pump power by 415 KWh/Day.
- 2. Monetary Saving: Rs. 6.92 Lac/Annum

TR Ductile AC Valve Closed

2. Monetary Saving : RS. 6.92

High Energy Efficient 11KV HT Motor Replacement (5Nos.)

Theme

Problem

High Energy Efficient motor Replacement in BFP-3, Boiler Fans unit1 & 2 (5Nos.)

High Auxiliary power consumption due to low efficiency

Solution

A study has been conducted and observed that single BFP was running up to 38.2 MW load and taken power 1361 Kw approx. hence there is a margin of power saving if same motor replaced by high efficiency motor

Capex purposed with minor modification at motor foundation level with the same pump Motor have been replaced.

Reduction in Auxiliary

In BFP power saving achieved as 740 KWh/Day

Unit-1 Boiler Fans saving Achieved as 755 Kwh/Day

Unit-2 Boiler Fans saving Achieved as 1197 Kwh/Day

Saving Achived: Rs. 44.5 Lac/Annual

Major Energy Conservation Projects (FY2021-22)

SI.No	Activities Detail	FPR	Completion Month	Status
1	CHP Bucket Elevator 1&2 to be Run with Single VFD	SH- E&I	Apr,21	Completed
2	Increase OEE of CHP i.e thru put 150 TPH	SH-Maint.	Dec,21	U/P O
3	Cooling Fan Installation in GT-1 Radiator cooling to reduce losses	SH- E&I	Apr,21	Completed
4	Air to fuel combustion improvement with APC fine tuning operation	SH- E&I SH-Operation	Aug,21	U/P 🔾
6	Utilisation of low cost fuel blending with High GCV coal for Cost rection	SH-Operation	Mar,22	U/P O
7	Energy Efficient Motor installation in LT drives	SH- E&I	Mar,22	U/P O
8	Installation of energy efficient ACW pump with 45Kw Motor	SH-E&I SH-Maint.	Apr,21	Completed •
9	All CHP belt conveyor Electrical feeder modification from rack out to Fixed type to improve the availability safety.	SH- E&I	Sept,21	Under Progress
10	Installation of energy efficient CEP pump	SH-Maint.	July,21	Under progre
11	Both boiler and TG insulation so many place damage identified and rectified. Thermal heat losses to be reduced by strengthen insulation	SH-Operation	May,21	Partially completed

Improvement Project Completed

Improvement Project Under Progress

Improvement Project Partially Completed

Major Energy Conservation Projects (FY2021-22)

Sl.No	Activities Detail	FPR	Target Month completion	Status
12	Guard protections hook-up to DCS and ,Belt tear Protection hook up to DCS	SH- E&I	July,21	Material Under procurement
13	Oil Centrifuge controller to be taken in DCS	SH- E&I	June,21	Logic Under preparation
14	1)Bed ash cooler Input Inst. & service air charging by SOV, 30 sec before BAC Start command & SOV close after 30sec of BAC stop command. 2)DCS Interlocking of Bed ash cooler Input Inst. & service air charging by SOV, 30 sec before BAC Start command & SOV close after 30sec of BAC stop command. 3) Auto Operation of Bed ash cooler as per the bed height	SH-Operation SH-Maint. SH- E&I	May,21	Partially Completed
15	Boiler-1 APH jammed tube to be removed in flue gas path .	SH-Operation	May,21	Completed
16	Both TG Mist fan discharge line height to be increased	SH-Maint.	Dec,21	Under review O
17	LT drives Energies efficient Motors installation (SA, CEP)	SH- E&I SH- Maint.	Aug,21	Under progress
18	Exploration and utilization of low cost fuel like cinder, agro waste and AFR	SH-Operation	Continuous	Under progress
19	Heat exchanger installation after baghouse and improve the FW temp	SH-Operation SH-Maint.	Mar,22	Under review 🔾
20	Thermography to be done for boiler and turbine pipe lines	SH-Operation	Regular	Under progress O
21	WHRB project of 12 MW.	FH-Tech, HOD-TPP	Mar,22	Under review O

Improvement Project Completed

Improvement Project Under Progress

Improvement Project Partially Completed

Major Energy Conservation Projects (FY2020-21)

Confederation of Indian Industry

			22.110001010	ii oi ziididii ziiddsti y
S.	Title of Project	Annual Electrical	Annual Thermal	Total Annual Savings (Rs.
No.		Saving (kWh)	Saving (Kcal)	million)
1	Process optimization through changes in Logics and implementation of innovative idea (e.g Avoid variation in loading , by process optimizer and minimum deviation in design parameter	0	1776278400	2.2
2	Innovative Idea: Energy Reduction in Cooling Tower fan without any Investment	19200	0	0.09
3	Reduced ACW Power, identified various OFIs via walk through audit Viz Stopped unused cooling water by closing I/L valve and throttle various valve as per the need	132800	0	0.61
4	Reduced ACW Power: Oil cooler replacement with higher heating surface at Inst. Compressor-1 & Instrument Compressor-2	64000	0	0.29
5	Cyclic timer installed in 4 nos. of bag filter RAV to optimized CHP power	640	0	0.0029
6	All package AC power optimization as per the room condition	28800	0	0.13
7	Modification in Bed Ash cooler and logic prepared to save ACW power	51200	0	0.23
8	Out of 6Nos. DT transformer 3nos. Stopped and save losses	80000	0	0.37
9	Optimization of Boiler FAN Power viz, bed height reducing, SA fan pressure reducing, lime stone feeding	409600	0	1.87
	Innovative Idea: Energy Reduction in Compressor power without any Investment	102400	0	0.47
	Boiler-2 Indigenous Energy Efficient 11KV HT motor installed in PA & ID	447040	0	2.04
	Boiler-1 Indigenous Energy Efficient 11KV HT motor installed in PA & ID	305280	0	1.4
	Indigenous Energy Efficient 11KV HT motor installed in BFP-3	319680	0	1.46
	Heat Exchanger provided at Instrument Compressor Oil cooler for Maintain the Element Temp	2700	0	0.01
	ACW Pump Power reduced from 1300 to 1023 Kwh/day by optimizing the water valves at different locations.	24840	0	0.11
16	Operation of Screw Compressor with 1.8 Kg/Cm2 Cooling Water Pressure	10260	0	0.05
	Bed ash cooler operation done by using VAM chilled outlet water in Boiler-1	17550	0	0.08
	Reduction In Auxiliary Cooling water (ACW Pump) Power from 2.0 to 1.8 kg/cm2	19440	0	0.09
-	CHP bag filter RAL's Operation through timer base for power saving (30min delayed)	2160	0	0.01
	Process optimization- running of single BFP (lower capacity) upto 39MW	420000	0	1.92
	SOV Installed in Bag house -2 all purge header	12960	0	0.06
	BFP stand by MV Drive Transformer and cooling fan stopped	51200	0	0.23
23	Total 18 no Steam line drain valve IBR valves replaced	0	419328000	0.5195
	Total	2521750		14.2424

3.24

0.535

1.42

0.66

0.04

0.08

1.16

0.48

1.09

0.42

3.54

0.32

0.65

0.33

15

28.9

(Rs million)

16.69

2.75

7.3

3.42

0.2

0.413

5.97

2.44

18

2.24

17.87

1.6

3.25

1.65

101.27

185.03

40

	Major	Energy	Conservation	Projects	(FY2019-20)	
UltraTech						

Spare drain valves provided at Common steam header drain line for avoid steam passing.

BFP Auto Close Loop Operation in DP Mode (No Investment)

Reduction In Auxiliary Cooling water (ACW Pump) Power

Screw Conveyor Installation for Raw Mill Powder to control Sox

CHP Operation from CCR and Through put increasing initiatives

ACC Tube Bundle replacement in unit-1 (HDG Multi row to SRC Al Fins)

VFD In bag Filters Blower BC-4, T2 Tower and Crusher & Close Loop Operation

Total

VAM AHUs in Auto control loop

Reduction In compressor Power

VFD Installation in Jockey Pump

SA Fan-1 Power Optimization

Reduction in Transformer Loss

Grid Surrender (TMC saving)

AHU-4 Installation in Workshop MV drive

Chilled water Dryer for compressed air system

Reduction In CT Fan Power

UltraTeci			Confederation of Indian Industry
S. No.	Title of Project	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving

CII National Award for Excellence in Energy Management 2021

3

4

5

6

8

9

10

11

12

13

14

15

16

Major Energy Conservation Projects (FY2018-19)

Confederation of Indian Industry					
No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Kcal)	Total Annual Savings (Rs. million)	
1	Reduced DG auxiliary power by stopping the heater of Day tank	17280	0	0.0029	
2	Installed of new LED lights in place of HPSV / HPMV lights at TPP in phased manner	9220	0	0.0415	
3	Resized the pump of de gasser pump with the existing ultra filter backwash pump	2190	0	0.101	
	Stopped MGF pump to eliminate the filter feed pump and fed directly raw-water from reservoir to MGF feed line at WTP	2608	0	0.01	
5	Resized the pump of RO booster with existing ultra filter backwash pump	6022.5	0	0.003	
6	CHP power optimized by replacing motorized RAV with in house fab. flap gate self operated by gravity.	450	0	0.002	
7	Stopped the running of effluent transfer pump by direct transferring through N-pit transfer pump	2520	0	0.0097	
8	Optimized auto purging time in APH & bag house conveying system	3576	0	0.0009	
9	Bag filter running optimized during pet coke feeding	640	0	0.003	
10	Optimized the running of P&V water pump during night hrs. considering the ambient temperature	810	0	0.003	
	Sealing air of coal feeder at Unit-1 Given from SA Fan air instead of PA Fan air, Thus loading on PA fan reduced and Gain in power saving achieved	5399	0	0.02	
	SA main Combustion air Damper 2Nos. removed from both units, thus pressure drop reduced and flow increased at same loading	2240	0	0.11	
	Optimized the load distribution transformer (11KV/415V) & stopped 3 no's of distribution transformer which is running under low load.	49000	0	0.19	
14	LT drive installed In ACC	264001	0	0.153	
15	Lime Stone Circuit Modified	68000	0	0.29	
16	Turbine #2 overhauling and replaced all interstate fins.	0	5760000000	7.89	
17	Installation of Vapour Absorption Machine (VAM)	595000	0	3.1	
18	Installation of Y duct in PA fan for reducing pressure drop in fan suction	187704	0	2.3	
19	Reduction in the power consumption for RO booster pump.	12045	0	0.6	
20	Unit#2 ACC HDG tube bundles replacement with ALE-SRC bundles	669615.26	6480000000	12.34	
	Total	1898320.76	12240000000	27.17	

Thanks for Your Sincere & Kind Attention

Presented By:

Praveen Vijayvargiya
General Manager - CPP
p.vijayvargiya@adityabirla.com

UltraTech Cement Ltd.
Vikram Cement Works
Captive Power Plant